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Abstract Non-human primates compare quantities in a

crude manner, by approximating their values. Less is known

about the mental transformations that non-humans can per-

form over approximate quantities, such as arithmetic trans-

formations. There is evidence that human symbolic arithmetic

has a deep psychological connection with the primitive,

approximate forms of quantification of non-human animals.

Here, we ask whether the subtle performance signatures that

humans exhibit during symbolic arithmetic also bear a con-

nection to primitive arithmetic. Specifically, we examined the

problem size effect, the tie effect, and the practice effect—

effects which are commonly observed in children’s math

performance in school. We show that, like humans, monkeys

exhibited the problem size and tie effects, indicating com-

monalities in arithmetic algorithms with humans. Unlike

humans, however, monkeys did not exhibit a practice effect.

Together, these findings provide new evidence for a cognitive

relation between non-symbolic and symbolic arithmetic.

Keywords Numerosity � Numerical cognition � Primate

cognition � Arithmetic

Introduction

Non-human animals cannot represent the precise value of a

number because they lack the symbols needed for verbal

counting. Symbols such as count words (thirteen, fourteen,

fifteen, etc.) or Arabic numerals (13, 14, 15, etc.) represent

numerical values precisely. Only with symbols for number

is it apparent that 118 and 119 differ by the same amount as

3 and 4. Non-human animals do not have a symbolic sys-

tem for representing precise numerical differences in this

way. Training studies with non-human animals such as

chimpanzees (Boysen and Berntson 1989; Matsuzawa

2009; Tomonaga 2008) and parrots (Pepperberg 2006)

have shown that animals can learn that symbols (spoken

words, numerals) represent quantitative values and they

can estimate the outcomes of some arithmetic transfor-

mations of those symbols. However, even when non-hu-

man animals are successfully trained to use symbols to

represent quantities, they cannot use symbols to represent

precise quantities (Tomonaga 2008). Instead of using dis-

crete representations of numerical values, non-human ani-

mals represent numerical values approximately, which is

akin to estimating (Agrillo et al. 2011; Beran 2004; Cant-

lon and Brannon 2006a, b; Garland et al. 2012; Pepperberg

2006; Vonk and Beran 2012).

The main behavioral signature of the approximate

number system (ANS) is the numerical ratio effect

whereby the ability to psychologically discriminate

numerical values depends on the ratio between the values

being compared. This effect is known more broadly as

Weber’s law. An implication of the numerical ratio effect

is that there is noise (i.e., error) in the psychological rep-

resentation of each numerical value that is proportional to

its value. Hence, larger values are psychologically noisier

than smaller values.

There is compelling evidence that the ANS served as an

evolutionary foundation for the uniquely human ability to

represent number precisely and perform symbolic arith-

metic. For example, when animals and adult humans are

tested in the same nonverbal numerical tasks, their
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performance is often indistinguishable (e.g., Cantlon and

Brannon 2006a, b, 2007a, b; Cordes et al. 2001, 2007;

Beran and Beran 2004; Beran et al. 2008, 2011). In a study

by Cantlon and Brannon (2006a), monkeys and adult

humans were required to choose one of the two visual

arrays that contained the smaller number of elements.

Humans were instructed to respond rapidly, without ver-

bally counting the elements and monkeys were trained to

do the same task through trial-and-error behavioral train-

ing. When monkeys and humans were tested on identical

versions of this numerical comparison task, their patterns

of performance were remarkably similar: Both groups

showed steady decreases in accuracy and increases in

response time as numerical ratio between the stimuli

approached 1. Moreover, infants and preschool children

who have no formal arithmetic training can estimate the

outcomes of addition and subtraction problems, and their

error patterns exhibit a similar numerical ratio effect to that

of non-human primates and adult humans who are pre-

vented from verbally counting (e.g., Barth et al. 2005;

Cantlon and Brannon 2007a, b; McCrink and Wynn 2004).

The fact that an approximate numerical ability emerges

early in development and is shared by non-human species

suggests that basic numerical abilities have a long evolu-

tionary history.

More recent data support the hypothesis that the ANS is

foundational for symbolic mathematics by showing a

positive relation between acuity of the ANS and symbolic

mathematic performance across the lifespan (Halberda

et al. 2008; Hyde et al. 2014; Gilmore et al. 2010; McCrink

and Wynn 2004; Park and Brannon 2013). Some data

further suggest a causal link between non-symbolic

numerical reasoning and symbolic numerical abilities (Park

and Brannon 2013). If non-symbolic numerical abilities

play a causal role in symbolic numerical reasoning, then

some of the processes of symbolic numerical cognition

may be inherited from non-symbolic numerical cognition.

Thus, an understanding of non-symbolic numerical pro-

cessing could be quite informative for understanding the

development of symbolic mathematics in humans.

Although robust evidence indicates that non-human

animals share a capacity for numerical representation and

comparison with humans, less is known about the evolu-

tionary foundations of arithmetic (but see Beran 2004;

Beran and Beran 2004; Cantlon and Brannon 2007a, b;

Pica et al. 2004). In particular, there are three classic

psychological signatures of human arithmetic that have

sometimes been described as unique to human arithmetic:

the problem size effect, the tie effect, and practice effects

(e.g., Ashcraft and Battaglia 1978; Campbell 1987;

Campbell and Graham 1985; Geary 1996; Siegler 1987;

Zbrodoff and Logan 2005). The problem size effect rep-

resents a systematic decline in accuracy and response time

as the magnitude of the operands in an arithmetic problem

increase (e.g., 5 ? 7 is more difficult than 3 ? 4). The tie

effect represents better performance for addition problems

in which the two operands are identical (e.g., 2 ? 2 is

easier than 1 ? 3). Finally, practice effects are simply

improvements in performance with repeated exposure to a

given problem. Each of these effects is observed from as

soon as mathematics education begins throughout adult-

hood. However, it is unclear whether these effects are

signatures of uniquely human symbolic arithmetic or

instead might be more fundamental signatures of arithmetic

computation.

For three decades, the main interpretations of the

problem size, practice, and tie effects have hinged on the

assumption that basic arithmetic problems and outcomes

are memorized in a symbolic format in humans (e.g.,

Ashcraft and Battaglia 1978; Campbell 1987; Geary 1996;

Siegler 1987; Zbrodoff and Logan 2005). One interpreta-

tion of the problem size effect, for example, is that it

emerges from the spreading of activation in a semantic

network of precisely memorized arithmetic operands and

outcomes in which small numbers are represented more

strongly than large numbers (e.g., Widaman et al. 1992). A

second interpretation of the problem size effect is that

children are exposed to small arithmetic problems more

frequently than large problems, and therefore, small prob-

lems are recalled more reliably than large problems (e.g.,

Campbell and Graham 1985; Hamann and Ashcraft 1986),

perhaps due to stronger associations between small prob-

lems and their outcomes (Siegler and Shrager 1984).

Similarly, the tie effect is hypothesized to emerge from less

interference during memory retrieval (Campbell 1995) or

greater exposure to tie problems over development, which

results in superior memorization of ties. According to these

hypotheses, the problem size, practice, and tie effects

would not apply to non-symbolic arithmetic because nei-

ther the ability to form precise problem–outcome associa-

tions nor the ability to retrieve precise verbal arithmetic

facts occurs in the absence of a precise, language-based

symbolic numerical system.

As the non-linguistic, approximate system of basic

arithmetic has come into focus, alternative explanations of

the problem size, practice, and tie effects have been offered

that are not based on precise, language-based memorization

(e.g., Campbell 1995; Lefevre et al. 1996; Zorzi et al.

2005). For example, one hypothesis for a non-symbolic

basis of the problem size effect is that problems with larger

outcome magnitudes have more psychological overlap with

adjacent outcomes than do smaller magnitudes, resulting in

more errors for larger problems (Zorzi et al. 2005). This

explanation of the problem size effect could apply to both

symbolic and non-symbolic arithmetic. In terms of the tie

effect, a non-symbolic hypothesis for the tie effect is that
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tie problems induce fewer errors due to priming of the

identical addend values (Blankenberger 2001). Priming of

addends could occur with both symbolic and non-symbolic

stimuli, and thus, the tie effect might not be unique to

symbolic arithmetic. Although some proposals for a non-

symbolic basis of these effects have been made, the exis-

tence of these effects has not been explored in a nonverbal

animal. If these signatures of arithmetic processing origi-

nate from the fundamental structure of the computational

system for arithmetic, then non-human animals could show

evidence of the problem size, tie, and practice effects. The

investigation of these effects in non-human animals would

have important implications not only for understanding the

origins of human arithmetic but also for understanding the

cognitive processes underlying arithmetic.

Method

Subjects

Subjects were two adult female rhesus macaques, Feinstein

and Boxer. All animal care procedures are in accordance

with an IACUC protocol. Both subjects participated in

prior numerical judgment experiments including numerical

comparison, matching, and addition with static sets of dots

(Cantlon and Brannon 2005, 2006a, b, 2007a, b; Jordan and

Brannon 2006). Thus, these animals had significant prior

training with numerical estimation and some prior experi-

ence with addition but not subtraction.

Task

Monkeys were tested in sound-attenuated testing rooms

while seated in plexiglass primate chairs in front of a com-

puter monitor (640 9 480, 30 cm viewing distance, 110

pixels per degree visual angle, 60 Hz). Stimuli were pre-

sented on a touch-sensitive computer screen in randomly

selected locations. To begin a trial, subjects were required to

press a start stimulus, a small red square presented in the

bottom left corner of the screen. Following this response, a

short movie was presented (Fig. 1). The movie displayed a

3-D-like scene in which a set of animated red balls floated in

empty black space, a green rectangular screen then emerged

from the top of the screen and covered the set of floating

balls. A second set of balls then floated into view from the

side of the screen and moved behind the green occluder

(addition problems) or a subset of the initial set of red balls

flew out from behind the green occluder and off screen

(subtraction problems). After viewing one of these ‘‘prob-

lems,’’ two static visual arrays appeared on the screen and the

monkeys were required to touch the array that represented

the arithmetic outcome of the problem.

Monkeys were given positive visual (light-up border)

and auditory (chime) feedback for correct choices and

negative visual (black screen) and auditory (warning tone)

feedback for incorrect responses. Incorrect responses were

also followed by a variable 2- to 5-s timeout period.

Monkeys were rewarded with small amounts of Kool-Aid

for correct responses.

Training

Throughout the addition and subtraction training period,

only problems with outcomes of 2, 4 and 8 were presented.

The same three values were used as distractors on each

trial. The three test choice pairs (2 and 4, 4 and 8, 2 and 8)

appeared with equal frequency in a random order, and there

was an equal probability that 2, 4, or 8 was the correct sum.

Both monkeys had prior experience with an addition

task in which problems were presented as static arrays of

dots rather than as animated arithmetic movies (Cantlon

and Brannon 2007a). In the initial phase of this animated

movie arithmetic experiment, monkeys were trained with

familiar addition problems (1 ? 1, 2 ? 2, and 4 ? 4, with

the choices pairs of the values 2, 4, and 8). Monkeys

required approximately 8 sessions (*1500 trials) to reach

the criterion of 70 % accuracy per session over at least 2

consecutive days (although overall performance was sig-

nificantly above chance ([50 %) from the first training

session). Next, we expanded the problem set to include a

greater variety of problems with the same solutions of 2, 4,

or 8 (1 ? 1, 2 ? 2, 1 ? 3, 3 ? 1, 4 ? 4, 1 ? 7, 7 ? 1,

2 ? 6, and 6 ? 2). Performance on these addition prob-

lems remained high ([70 %), and so, we expanded mon-

keys’ training sets to include a wider variety of addition

movies in which the positions and sizes of the animated

balls were varied. To ensure that monkeys were competent

with the animated arithmetic task, both monkeys were

trained on these addition problems for over 20 sessions

before we began subtraction training. During this last phase

of training, one monkey (Boxer) required remedial training

of approximately 30 sessions to discourage her bias to turn

her head away from the movies. Note that both of these

monkeys had previously performed addition with static

arrays in a prior study (Cantlon and Brannon 2007a), and

thus, this entire phase of training only served to facilitate

the monkeys’ understanding of the animated movie addi-

tion stimuli; they were already competent at solving

addition problems with static stimuli.

In the last phase of training, we introduced a set of

subtraction training problems all of which had the correct

outcomes of 2, 4, or 8 (4 - 2, 6 - 4, 8 - 6, 10 - 8,

12 - 10, 6 - 2, 8 - 4, 10 - 6, 12 - 8, 10 - 2, 12 - 5,

and 14 - 6). Subtraction problems were randomly inter-

mixed with addition problems in each session. Half of the
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trials per session were subtraction, and half were addition.

The total training period in this phase consisted of

approximately 147 sessions of 250 trials per session over

7 months.

Testing

After training, monkeys were tested with addition and

subtraction problems with the novel outcomes of 3 (1 ? 2,

2 ? 1, 10 - 7, 12 - 9, 11 - 8, 5 - 2, 4 - 1), 6 (1 ? 5,

2 ? 4, 3 ? 3, 4 ? 2, 5 ? 1, 11 - 5, 10 - 4, and 9 - 3),

and 12(9 ? 3, 11 ? 1, 10 ? 2, 4 ? 8, 5 ? 7, 3 ? 9,

14 - 2, 13 - 1). Each test problem was presented with a

choice between the correct outcome versus one of all

possible distractor options from the test and training out-

come values (excluding the correct outcome): 2, 3, 4, 6, 8,

or 12. Test problems were non-differentially reinforced

such that whatever choice the monkey made, whether

correct or incorrect, they were positively reinforced with

juice and computer feedback. Non-differential reinforce-

ment reinforces the animal’s initial strategy for solving the

novel test problems and prevents extinction. The test

problems comprised 20 % of trials and were randomly

mixed in with the training problems in each session.

Monkeys were tested on approximately 675 test problems

spread out over 18 sessions. Each test problem occurred

with equal frequency.

Stimuli

The animated arithmetic problems consisted of red floating

balls on a black background. There were 12 different

exemplars of each of the 23 test problems. The locations

and motion trajectories of the balls were varied across

exemplars with the constraint that none of the balls crossed

paths and that all balls moved linearly to enter or exit the

screen along the horizontal axis. To control for cumulative

surface area, the size of the balls held one of the three

Addition
1+1

Subtraction
4-2

1 item on screen, 
occluder goes down

2nd item appears, 
travels behind occluder

4 items on screen, 
occluder goes down

2 items fly out and 
off screen to left

Choices given

Fig. 1 Example of an addition

(1 ? 1) and subtraction (4 - 2)

trials. The problems were

presented as movies wherein

two sets of objects were

sequentially united behind an

occlude (addition) or one set of

objects is displayed and then a

subset of the items are removed

(subtraction). Subjects were

given two choices after each

movie, from which to choose

the correct arithmetic outcome
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values: 625, 1225, and 1849 pixels. Each addition and

subtraction problem was presented with each of these

element sizes so that element size could not serve as a cue

to the correct outcome. These element sizes resulted in

cumulative surface areas for the correct outcomes (range

1250–14,792 pixels) that were within the range of the

cumulative surface areas for the distractors (range

425–21,200 pixels). This meant that the correct and

incorrect choices had overlapping cumulative surface area

values and thus were, on average, equally similar in

cumulative surface area to the movie problem stimuli.

Thus, a strategy based on cumulative surface area sum-

mation or subtraction would not lead to above chance

performance; since the monkeys did perform above chance,

we do not further pursue the issue of a cumulative surface

area confound in the results. Each movie was held constant

at 1.5 s so that movie duration could not serve as a cue to

the correct choice.

Results

Monkeys have the capacity for non-symbolic

arithmetic, including addition and subtraction

Acquisition of movie task

Monkeys were initially trained to solve animated arith-

metic problems with addition only. Both monkeys had

prior experience with performing addition on static stimuli

(Cantlon and Brannon 2007a), and so, this acquisition

period only served to familiarize monkeys with the novelty

of animated arithmetic movies. As shown in Fig. 2, both

monkeys’ performance remained stable at approximately

70 % throughout addition training. Additionally, monkeys

performed about as well on the movie addition task as on

the static addition task from a previous experiment (Cant-

lon and Brannon 2007a). In Fig. 2, each data point repre-

sents 10 sessions of approximately 250 trials each and

summarizes performance across the different phases of

addition training described inMethods for a constant subset

of addition problems (1 ? 1, 1 ? 3, 2 ? 2, 3 ? 1, 2 ? 4,

3 ? 3, 4 ? 2, 3 ? 5, 4 ? 4, 5 ? 3).

Subtraction training

Once monkeys were familiarized with the animated arith-

metic stimuli during the addition training phase, we trained

them to perform a small set of subtraction problems.

Monkeys performed significantly above chance during

the first 5 sessions of subtraction training (binomial test;

Boxer N = 328/486, P\ 0.001; Feinstein N = 414/619,

P\ 0.001). However, their performance in this initial

training phase suggested that they were using a non-arith-

metic strategy. Figure 3 top panel shows monkeys’ addi-

tion and subtraction performance from the sessions where

subtraction problems were first introduced. The fig-

ure shows that both monkeys performed at or below chance

on subtraction problems when the correct answer was

the larger numerosity (binomial test; Boxer 132/261,

P = 0.45; Feinstein 121/305, P = 0.99). Note that this was

not true for addition problems. Thus, monkeys’ early

subtraction performance indicates that they initially adop-

ted a bias to choose smaller numbers during the subtraction

problems. However, as shown in Fig. 3, bottom panel, that

bias disappeared by the end of subtraction training for both

monkeys. Figure 4 shows monkeys’ performance on each

problem in the final phase of addition and subtraction

movie training. Both monkeys performed significantly

above chance on all problems by the end of training (Boxer

all P’s\ 0.02; Feinstein all P’s\ 0.003).

Subtraction test

Following subtraction training, monkeys were tested on a

novel set of subtraction problems with the outcomes 3, 6,

and 12. The purpose of this test was to determine whether

monkeys were simply memorizing the outcomes of the

individual arithmetic problems or whether they had learned

a generalizable arithmetic rule. The novel test problems

were mixed in with the familiar training problems; however,

on test problems the monkeys were positively reinforced

regardless of their response so that they could not learn the

answers to the novel problems during testing. Figure 5a, b

shows each monkey’s performance on the novel test prob-

lems in red alongside their training performance in black
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(see also Table 1). Both monkeys performed significantly

above chance on the addition and subtraction test problems

overall (all P’s\ .001 for both monkeys). Monkeys also

performed significantly above chance on the majority of the

individual arithmetic problems. The exceptions were

12 - 9, 10 - 7, 11 - 5, and 9 - 3 for Boxer and 10 - 7,

12 - 9, 11 - 8, and 10 - 4 for Feinstein (all P’s[ 0.05).

These patterns seem to be idiosyncratic and not to provide
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any evidence that monkeys used a non-arithmetic strategy to

solve the problems. Figure 5c shows the outcome of control

analyses that we used to determine whether the monkeys

were using a non-arithmetic heuristic to solve the addition

and subtraction problems. We tested whether monkeys were

matching the value of the largest, first, or second addend

rather than solving the arithmetic problems. The graph in

Fig. 5c shows the subset of addition and subtraction trials

where the largest, first, or second operand was equal to the

incorrect choice. Figure 5c shows that monkeys were not

attempting to match a single operand since they were above

chance when the largest, first, and second operands were

equal to the distractor choice for both addition and sub-

traction operations. Monkeys’ overall performance on

individual problems is presented in Table 1.

An indication that monkeys were using a true numerical

strategy to perform this task is that they both showed a ratio

effect in their performance, even for problems for which

their performance did not exceed chance. Figure 6 shows

that the numerical ratio between the correct sum and the

distractor choice influenced their accuracy for addition and

subtraction. The fact that the ratio effects are parallel

between addition and subtraction operations suggests that

these two operations are tapping a common mechanism at

the decision stage.

Monkeys show the classic signatures of human

arithmetic

As described in the introduction, there are three classic sig-

natures of arithmetic that are observed in humans: the problem

size effect, the tie effect, and the practice effect. We tested

whether monkeys also exhibit these performance effects.

Problem size effect

The effect of problem size on monkeys’ performance would

be expected to manifest as lower performance the larger the

problem size for addition. However, in our experimental

design, different ratios were tested at different outcome sizes

which would result in different levels of ratio-dependent

difficulty at each problem size. Therefore, in order to look for

a problem size effect, we used a partial regression to remove

the effect of ratio from monkeys’ accuracy and then tested

whether the remaining variability (the residuals) showed a

problem size effect. The partial correlation between problem

size and accuracy, controlling for ratio, was statistically

significant for each monkey (Boxer: R(585) = -0.22,

P\ 0.0001; Feinstein: R(562) = -0. 25, P\ 0.0001).

Figure 7 shows that monkeys exhibited a problem size effect

in their performance that was independent of the ratio effect.

That is, accuracy decreased with increasing sum size.

Table 1 Monkeys’ average performance on each problem of the

addition and subtraction task

Operation Outcome Operand1 Operand2 % Correct r

Addition 2 1 1 90 0.048

3 1 2 89 0.014

3 2 1 88 0.050

4 1 3 75 0.090

4 2 2 75 0.092

4 3 1 74 0.095

6 1 5 78 0.064

6 2 4 67 0.125

6 3 3 77 0.044

6 4 2 73 0.094

6 5 1 73 0.072

8 1 7 85 0.059

8 2 6 85 0.050

8 3 5 78 0.180

8 4 4 83 0.063

8 5 3 74 0.109

8 6 2 80 0.039

8 7 1 72 0.003

12 3 9 98 0.016

12 4 8 89 0.028

12 5 7 81 0.138

12 9 3 80 0.011

12 10 2 87 0.009

12 11 1 83 0.029

Subtraction 2 4 2 75 0.072

2 6 4 58 0.033

2 8 6 72 0.018

2 10 8 71 0.070

2 12 10 67 0.028

3 4 1 88 0.125

3 5 2 79 0.031

3 10 7 57 0.016

3 11 8 74 0.063

3 12 9 64 0.113

4 6 2 78 0.076

4 8 4 72 0.021

4 10 6 73 0.036

4 12 8 68 0.003

6 9 3 73 0.011

6 10 4 67 0.000

6 11 5 74 0.039

8 10 2 85 0.027

8 12 4 86 0.033

8 14 6 87 0.037

12 13 1 91 0.039

12 14 2 86 0.009
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Tie effect

A tie effect is defined by greater accuracy on problems with

two identical addends compared to problems with two

different addends. We tested whether monkeys exhibited a

tie effect in their addition performance by looking at

accuracy on ties versus non-ties, at equal levels of expe-

rience. Figure 8 shows monkeys’ performance on addition

problems with tied addends (1 ? 1, 2 ? 2, 4 ? 4) com-

pared to non-tie problems with the same outcome values

(1 ? 3, 3 ? 1, 2 ? 4, 4 ? 2, 3 ? 5, 5 ? 3) in blocks of

300 trials from the beginning of their training with those

problems. The data show that across arithmetic training,

monkeys were consistently more accurate on tie problems

compared to non-ties given the same outcome values and

equal levels of experience (paired t tests; Boxer:

t(10) = 2.81, P\ .05; Feinstein: t(10) = 2.42, P\ .05).

Practice effect

Human children and adults show a practice effect during

arithmetic learning wherein accuracy on specific problems

improves with accumulated experience. We tested whether

performance on a core set of problems improved for

monkeys over years of experience, beginning with their

2006 performance during the static addition task from a

previous study (Cantlon and Brannon 2007a) and contin-

uing to their performance on the dynamic movie arithmetic

task in the current study. The core problem set was 1 ? 1,

1 ? 3, 2 ? 2, 3 ? 1, 2 ? 4, 3 ? 3, 4 ? 2, 3 ? 5, 4 ? 4,

and 5 ? 3. Monkeys did not show a practice effect in their

performance on these problems over the course of 3 years,

as shown in Fig. 9. There was no evidence of a trend of

improvement in accuracy (Boxer: R = 0.27, P = 0.45;

Feinstein: R = 0.20, P = 0.59).

Discussion

Monkeys exhibit a capacity for arithmetic that includes

addition and subtraction operations. In our experiment,

monkeys initially were trained on a sparse set of addition
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and subtraction problems. When tested with a novel set of

problems (and without being conditionally reinforced for

correct responses), they showed flexibility in their knowl-

edge of arithmetic that allowed them to solve those novel

problems. Additional analyses ruled out the possibility that

their performance was based on a simple heuristic such as

selecting the choice option closest the largest, first, or

second operand. These data show that addition and sub-

traction operations are not unique to the human species but

are instead widespread among animals like primates that

possess a non-symbolic capacity for quantitative reasoning.

It can be inferred from these findings that arithmetic

existed before symbols in human evolution. The conclusion

that arithmetic precedes symbolic representation in cogni-

tive evolution is also supported by studies of cognitive

development where young children show an intrinsic

understanding of arithmetic operations before they under-

stand the symbols that represent them in language (e.g.,

Gilmore et al. 2007).

Monkeys showed a problem size effect wherein per-

formance worsened as the sums of the addition problems

increased in value. This problem size effect occurred

independently of ratio in monkeys’ accuracy. A possible

explanation of the problem size effect in monkeys is that

the process of adding two quantities together creates more

noise in numerical representations than can be accounted

for by the numerical ratio effect alone (Cordes et al. 2007).

In a pure numerical comparison task (e.g., choose the

larger value of two visual arrays), the ratio effect can be

explained by the noise that arises at the point when the

monkey makes a comparison between the two choice

stimuli. But, unlike pure numerical comparison, addition

requires that the subject represent the numerical values of

each of the addends, combine those addend representations

into a sum, and then (in this task) make the numerical

comparison of the correct sum from the two choice stimuli.

Under these circumstances, we see a problem size effect

that is independent of the ratio effect in non-symbolic

arithmetic. It is an open question whether a similar

explanation can be extended to the problem size effect in

symbolic addition in humans.

Humans are faster and more accurate at adding problems

with repeated addends than problems with two different

addends, even when the outcomes are the same. We

observed this ‘‘tie effect’’ in monkeys’ addition perfor-

mance. One explanation of the tie effect that could apply to

both the human and monkey data is that ties have less error

because there is something akin to a priming effect for two

identical operands which makes the tie problems easier to

compute than non-ties (Blankenberger 2001). For example,

Gelman and Gallistel (1992) argue that for tie problems the

representation of a numerical value needs only to be done

once because the same mental magnitude represents both

operands. The redundancy in the operands in tie problems

thereby reduces the noise in the computation of the sum.

This explanation of the tie effect could apply to both

symbolic and non-symbolic addition.

Unlike humans, monkeys did not show a practice effect

in their performance over 3 years. The implication of this

result is that when humans encode problems as linguistic

symbols, they are able to store those problems as units in

long-term memory. Since monkeys lack symbols for

encoding problems as discrete entities, they cannot mem-

orize arithmetic problems. Therefore, symbols might be

required in order to show a practice effect in arithmetic. An

open question is how the memorization process associated

with the practice effect impacts the acquisition of arith-

metic knowledge in humans. The ability to memorize

problems appears to be critical for multiplication, for

example, where problem outcomes are memorized and this

type of memorization could have cascading effects for

learning other types of mathematics. The uniquely human

practice effect and its unique influence on human mathe-

matics learning are still somewhat of a mystery.

In summary, we observed a capacity for addition and

subtraction in non-human primates that exhibits some of the

classic signatures of human arithmetic, namely the problem

size and tie effects. These findings from non-human primates

raise the question of whether classic signatures of human

arithmetic are vestigial effects from the primitive ability to

perform arithmetic without symbols rather than a
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consequence of mathematics instruction in school. Resolv-

ing the origins of arithmetic signatures should ultimately

further our understanding of the constraints that influence

children’s acquisition of mathematical concepts.
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